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Abstract— Functional Near Infrared Spectroscopy (fNIRS) is a technique that is used for noninvasive measurement of the oxyhemoglobin 
(HbO2) and deoxyhemoglobin (Hb) concentrations in the brain tissue. Since the ratio of the concentration of these two agents is correlated 
with the neuronal activity, fNIRS can be used for the monitoring and quantifying the cortical activity. The portability of fNIRS makes it a 
good candidate for studies involving subject’s movement. The fNIRS measurements, however, are sensitive to artifacts generated by 
subject’s head motion. This makes fNIRS signals less effective in such applications. In this paper, the autoregressive moving average 
(ARMA) modeling of the fNIRS signal is used for state-space representation of the signal which is then fed to the Kalman filter for 
estimating the motionless signal. Results were compared to the autoregressive model (AR) based approach and showed that the ARMA 
models outperform AR models because of better modeling of the fNIRS signals. We showed that the signal to noise ratio (SNR) is about 3 
dB higher for ARMA based method. 

Index Terms—  Brain, Gaussian noise, linear model, state estimation.  

——————————      —————————— 

1 INTRODUCTION                                                                     
HIS paper’s focus  is on Functional near infrared spectros-
copy (fNIRS) as a relatively recent technique for noninva-
sive measurement of oxygenated hemoglobin (oxy-Hb) 

and deoxygenated hemoglobin (deoxy-Hb) concentrations in 
the human brain [1]. Other applications include quality con-
trol, pharmacology and medical diagnoses [2]. Basically, a typ-
ical fNIRS system is composed of one or a number of light 
sources in near infrared (NIR) range (700-900 nm), and several 
detectors that collect the reflected photons from the brain tis-
sue. In this spectrum, the blood and vital tissues are relatively 
transparent and by analysing the collected light intensities 
(fNIRS signals), the properties of the medium through which 
the light has passed can be extracted [2],[3]. 
This technique is affordable, portable, and capable of being 
used in real field applications such as monitoring pilots dur-
ing flight [2],[4],[5]. Also, fNIRS is safe compared to other im-
aging techniques such as X ray imaging, positron emission 
tomography (PET), nuclear medicine and computed tomogra-
phy (CT). As such, it has been widely used for studies with 
vulnerable populations such as neonates. However, such ap-
plications entail inevitable head movements. As the head mo-
tion can increase the blood flow through the scalp and rarely 
causes an increase in brain’s blood pressure [2] , therefore, 
motion artifact may change original signal and lead to incor-
rect result or misguided diagnose. 
Reducing head motion artifacts is therefore a key aspect in 
signal processing area of fNIRS studies and there have been a  

 
 

number of attempts. Adaptive filtering is used as the main 
artifact removal method [6]. The Wiener filter was also applied 
to the FNIRS signals [7]. A wavelet based approach was used 
by Molavi et al. [8]. Although these and other methods could 
reduce the motion artifact from fNIRS signals but each method 
has some specific requirements and limitations. 
For example, in the adaptive filter based method [6], the algo-
rithm needs additional hardware and sensors which makes it 
more complex and costly. The Wiener filter based method 
does not need extra instruments [7]; however, it needs to have 
the whole data simultaneously and therefore is not applicable 
in real time applications.  
In contrast, the Kalman filter based approaches, such as the 
one presented by Izzetoglu et al. do not need extra sensors and 
also can perform motion artifact reduction in real time [1]. In 
the Kalman filter based methods it is necessary to model the 
input signal by a linear model first. For example, an auto-
regressive (AR) model is used in [1] to model the fNIRS sys-
tem first, and then the AR model is transformed into state 
space representation. Next the Kalman filter is applied to es-
timate motionless data from motion corrupted data.  
In this paper, we have employed the Autoregressive Moving 
Average (ARMA) model instead of the commonly used AR 
model for motion artifact removing from the NIRS signals for 
the first time. Our results showed improved motion reduction 
over previous studies. The ARMA model is more comprehen-
sive than AR. Selecting an appropriate transform, as will be 
presented later, also leads to better results. Our results show 
an improvement of 3 dB in the signal to noise ration of the 
fNIRS signals.  
The rest of the paper is organized as follows.  In Section 4 the 
proposed algorithm is described in details. The data set used 
in this work is explained in that section as well. The results of 
the application of the proposed method to this data set are 
brought in section 5. Finally Section 6 concludes the paper 
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2 MATERIALS AND METHODS  
2.1 fNIRS Data  
Detailed The fNIRS data that used in this work were recorded 
by a three channel fNIRS probe attached to the subject’s fore-
head at CONQUER CollabOrative at Drexel University (3508 
Market Street, Philadelphia, PA 1904, Drexel University). 
fNIRS data were collected using a continuous wave fNIRS 
system. The fNIRS system is composed of three subsystems: 1) 
fNIRS sensors that consist of one light source and three photo 
detectors. The light source is a multi-wavelength light emit-
ting diode (LED) manufactured by Epitex Inc. type 
L4*730/4*850 – 40Q96-I. The LED comes in a STEM TO- 5 
package at 730 nm and 850 nm wavelengths with an output 
power of 5 to 15 mW. The photo detectors are manufactured 
by Burr-Brown Corporation type OPT101 and come in an 8-
pin DIP package. 2) A control box for operating the LEDs and 
photo detectors. 3) A desktop computer running the COBI 
Studio software developed in the laboratory for data acquisi-
tion and real-time data visualization. Three channels are used 
to record fNIRS signals. Source-detector distances for the 
channels are 2.8, 2.8, and 1 cm. Sampling frequency is 2 Hz. 
Six healthy, right handed individuals (3 males) with no history 
of neurological, psychological, or psychiatric disorders who 
were analgesic-free were recruited from the Drexel University 
community. All participants signed the informed consent form 
approved by the Institutional Review Board (IRB) at Drexel 
University. Examples of the recorded signals are shown in Fig. 
1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2 Protocol 
For In this study we have concentrated on the motion artifact 
reduction in the NIRS signals. This artifact is generated due to 
the head motions of the subject. Fig. 1 shows the motion cor-
rupted oxy-Hb and deoxy-Hb in solid and dotted lines respec-
tively. The following protocol was used. 

The first stage includes one minute baseline signal in which 
the subject was instructed to sit still and relax (rest stage). This 
stage is considered as motionless signal. Then the subject was 
instructed to move his/her head in a steady frequency around 
0.3 Hz for 30 seconds (three movements in each ten seconds). 
This motion artifact is considered as slow head motion. The 
experiment ended with two minutes post recording with no 
motion (post motion stage). 
As a result each of the two oxy-Hb and deoxy-Hb signals was 
contaminated by the motion artifacts. 
Fig. 2 shows a typical fNIRS signal including two rest and 
head motion stages. The post motion stage is removed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In our method we first model the fNIRS signal using the 
commonly used AR model as well as ARMA model. The linear 
model is then transformed into state space representations. 
Finally Kalman filter is applied using the information in the 
state space matrices and, the motionless signal is estimated. 
The results are compared by calculating ∆SNR for both AR 
and ARMA based methods. 

2.3 Linear Model 
In most cases, it is likely that not the entire recorded data is 
contaminated by motion artifact. Usually, motion artifact cor-
rupted parts of the signal are easily distinguishable from mo-
tionless parts. We will use motionless parts of NIRS data as 
well as motion corrupted parts to calculate required parame-
ters. 
At first, the fNIRS motionless signal (stage 1) is modeled as an 
autoregressive (AR) model. The optimal AR order for the sys-
tem (fNIRS motionless signal) was obtained by Akaike Infor-
mation Criterion as N=4. We can see form (1) that in an AR 
model of order of 4, how a sample of signal in the present time 
point 𝑘 is linearly relating to its previous values and to the 
noise. In (1), 𝑤𝑘 is a white Gaussian noise that its variance will 
be calculated later. 

 
Fig. 1. Example of fNIR signals including three stages, stage 1 is 
rest, and then subject was moving his/her head during stage 2, 
and stage 3 is post motion, solid line was used for deoxy-Hb and 
the dotted line for oxy-Hb.  

 

 
Fig. 2. Example of a typical fNIR signal with rest and head mo-
tion stages (stage 1 and stage 2 respectively). 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013                                                                    2282 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

𝑥𝑘 =  𝑎1𝑥𝑘−1 + ⋯+ 𝑎4𝑥𝑘−4 + 𝑤𝑘 (1) 
where 𝑎𝑖, i=1,...,4 are AR coefficients. We did not obtain the 

coefficients manually, but we used MATLAB to obtain them 
directly and automatically. The model which software as-
sumes for an AR model is as following. 

 
 M(q) y(n) = e(n) (2) 

where, 𝑦(𝑛) is a discrete function of 𝑛, e(n) is a Gaussian 
white noise, and 𝑀(𝑞) includes AR coefficients and is as fol-
lows; 

𝑀(𝑞) = 1 + 𝑚1𝑞−1 +𝑚2𝑞−2 +𝑚3𝑞−3 + 𝑚4𝑞−4 (3) 
 

In (3) operator 𝑞 is delay tap in fact, that after operating on 
the function 𝑦(𝑛), creates function lags. 

MATLAB uses the forward-backward algorithm to estimate 
the parameters of the linear model. In the forward model sum 
of a least-square criterion is minimized and analogous criteri-
on for a time-reversed model. 

At the next stage, the linear model is transformed into the 
state space representation as below; 

𝒙𝒌 = 𝐴𝒙𝒌−𝟏 + 𝒘𝒌 
 

(4) 

𝒛𝒌 = 𝐻𝒙𝒌 + 𝒗𝒌 (5) 
Where, 

 
 
 
, (6) 

 
𝒛𝒌 is the motion corrupted signal vector, 𝒙𝒌 is the motion-

less signal vector, 𝒘𝑘 is the measurement noise vector and 𝒗𝒌 
is the motion artifact vector. In general, 𝐴 is an N×N matrix  

and 𝐻 is an1×N row vector as followings: 
 

(7) 

and 
𝐻 = [1 0 … 0 0]1×𝑁 (8) 

 
As it was mentioned before, N=4 here. 
To estimate the covariance of system's noise, we assume 

𝒘�𝒌+𝟏 = 𝒛𝒌+𝟏 − 𝐺𝒙𝒌 (9) 
where 

𝐺 = [−𝑚1  −𝑚2  −𝑚3  −𝑚4] (10) 
𝒙𝒌 is the AR sample vector and 𝒛𝒌 is the measured signal 

vector. Index k contains those time points in which we have 
motionless signal. Eventually, variance of w�k+1 is calculated 
and considered as an estimation of the system's noise. Similar-
ly, to estimate the variance of the measuring noise or motion 

artifact we assume: 
𝒗�𝒌+𝟏 = 𝒛𝒌+𝟏 − 𝐻𝒙𝒌 (11) 

where, 𝐻 is the same as that it was brought in (8). 
In (11) index 𝑘 includes those time points during which 

head motions of the subject exist. 
We assume the statistics of the system and the measure-

ment noise to be wk and vk respectively, and also they are in-
dependent of each other, with white Gaussian distributions 
𝒘𝒌~ 𝑁 (0,𝑄),𝒗𝒌 ~ 𝑁(0,𝑅). Kalman filtering equations are as 
followings: 

1. Time update equations: 
𝒙�𝒌− = 𝐴𝒙�𝒌−𝟏−  (12) 

𝑃𝑘− = 𝐴𝑃𝑘−1𝐴𝑇 +  𝑄 (13) 
2. Measurement update equations: 

𝐾𝑘 =  𝑃𝑘−𝐻𝑇(𝐻𝑃𝑘−𝐻𝑇 +  𝑅)−1 (14) 
𝒙�𝒌 =  𝒙�𝒌− + 𝐾𝑘(𝒛𝒌 −  𝐻𝒙�𝒌−) (15) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘− (16) 
 

In which 𝑃𝑘− is a priori covariance matrix (error covariance 
matrix before update) as follows: 

𝒆𝒌− = 𝒙𝒌 − 𝒙�𝒌−     ,     𝑃𝑘− = 𝐸[𝒆𝒌−𝒆𝒌−𝑇] (17) 
𝒆𝒌 = 𝒙𝒌 − 𝒙�𝒌 ,𝑃𝑘 = 𝐸[𝒆𝒌𝒆𝒌𝑇] (18) 

 
where, 𝐾𝑘 is Kalman gain matrix [9]. 
Then output signal of the Kalman filter and the contami-

nated input signal are depicted in the plots below. One can see 
strength and success of the method in eliminating motion arti-
facts by visually comparison of the two signals. A quantitative 
criterion as ∆𝑆𝑁𝑅 is as below. 

∆𝑆𝑁𝑅 = 𝑆𝑁𝑅𝑒 − 𝑆𝑁𝑅𝑖  (19) 
where, the estimation of the signal to noise ratio, SNRe, is 

computed as 

)( 2

2

e

x
eSNR

σ
σ

=  (20) 

where, 𝜎𝑥2 is variance of the motionless signal, and 𝜎𝑒2 is the 
variance of estimation error that is difference between the NIR 
signal and the modified signal after applying filtering method. 

𝑒(𝑛) = 𝑥(𝑛)− 𝑥�(𝑛) (21) 
The input signal to noise ratio, SNRi, is computed as; 

)( 2

2

e

x
eSNR

σ
σ

=  
(22) 

where, 𝜎𝑣2 is the variance of the motion artifact. 
Now we develop an ARMA model for the NIR data that is 

a richer model than AR. Optimal order of model is obtained as 
N=4. The parameters of model directly and automatically 
were estimated using MATLAB. The model that MATLAB 
assumes for ARMA is as follows: 

𝑁(𝑞)𝑦(𝑛) = 𝐶(𝑞)𝑒(𝑛) (23) 
where 

𝑁(𝑞) = 1 + 𝑛1𝑞−1 + 𝑛2𝑞−2 + 𝑛3𝑞−3 + 𝑛4𝑞−4 (24) 
and 

𝐶(𝑞) = 1 + 𝑐1𝑞−1 + 𝑐2𝑞−2 + 𝑐3𝑞−3 + 𝑎4𝑞−4 (25) 
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For estimating ni and ci the software uses a recursive ap-
proach through which minimizes estimation error. The cost 
function is the determinant of input covariance matrix. 

Then this liner model is converted into a space state repre-
sentation. There are numerous state space representations for 
a linear system, however we chose the following representa-
tion that resulted in better outcome: 

𝒙𝒌 = 𝐹𝒙𝒌−𝟏 + 𝐵𝒘𝒌 (26) 
𝒛𝒌 = 𝐻𝒙𝒌 + 𝒗𝑘 (27) 

Where 
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(29) 

At this step the variance of the system's noise, wk, should 
be estimated. ARMA model can be written as: 

𝑦(𝑘) = −𝑛1𝑦(𝑘 − 1) −⋯− 𝑛4𝑦(𝑘 − 4) + 𝑒(𝑘)
+ 𝑐1𝑒(𝑘 − 1)+. . . +𝑐4𝑒(𝑘 − 4) 

(30) 

We can rewrite (30) as 
𝑒(𝑘) = 𝑦(𝑘) + 𝑛1𝑦(𝑘 − 1) +⋯+ 𝑛4𝑦(𝑘 − 4)− 𝑐1𝑒(𝑘 − 1)

−⋯− 𝑐4𝑒(𝑘 − 4) 
(31) 

One can obtain value of noise iteratively from (31) by 
knowing the initial value of the noise. We assume zero value 
for initial values of noise. After finding noise in this way, the 
variance of the noise can be easily calculated. 

To estimate the variance of the measurement noise, vk, that 
we assume it to be the motion artifact, the procedure is as fol-
lowing. An estimation of measurement noise can be in form of 
(32). 

 
𝒗�𝒌+𝟏 = 𝒛𝒌+𝟏 − 𝐻𝒙𝒌 (32) 

After finding 𝒗�𝒌 ,variance of measurement noise can be 
easily calculated. 

 
 

3 RESULTS 

3.1 Simulated Data 
To evaluate the accuracy of the method, the proposed algo-

rithms, both AR and ARMA based ones, are applied to the 
simulated data. Simulated data is in fact the same clear NIR 
signal that is contaminated by a known artificial noise. Some 
white noises with definite covariance added to one of the clear 
NIR signals, and then the variance of such noise is estimated 
through the algorithms explained before. If algorithm works 
well the variance will be estimated truly.  

Results of applying AR based algorithm to simulated data 
shown in Table 1.  

 

 
 
 
 
 
 
 
In Fig. 3, (a) an example of a white and Gaussian noise is 

shown. Such noise added to an fNIRS signal (stage 1) and the 
resulted signal is shown in (b), and in (c) the cleaned signal by 
AR based method is printed in solid line and the original sig-
nal from stage 1 in dashed- line.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
The result of testing algorithm relating to ARMA based meth-
od is shown in Table2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 4 (a) we demonstrated another white and Gaussian 

noise. Such noise added to a motionless fNIRS signal (stage 1) 

TABLE 1 
RESULTS OF APPLYING AR BASED METHOD TO SIMULATED DATA 

 

6 5 4 3 2 1 Signal 
index 

8.94 10 7.70 9.08 4.12 10.39 ∆𝑆𝑁𝑅 
 

  

 

 

Fig. 3. (a). A typical pattern of an artificial noise (we assume as white and 
Gaussian) (b). The noise in (a) added to an fNIRS signal (c). The contami-
nated signal in (b) is cleaned by AR based method (dashed line) and the 
original motionless signal (solid line). 
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TABLE 2 
RESULTS OF APPLYING ARMA BASED METHOD TO SIMULATED DATA 

 
0.10 0.12 0.07 0.09 0.08 0.07 0.10 covariance of 

Gaussian noise 
0.14 0.14 0.08 0.10 0.10 0.08 0.12 estimated  

covariance of 
noise 

3.70 2.83 1.82 2.45 2.63 1.63 3.21 ∆𝑆𝑁𝑅 
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and the corrupted is shown in (b). In (c) the cleaned signal by 
the ARMA model and the original motionless signal are 
shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

3.2 Real (actual) Data 
In this part we use the proposed method to estimate clear data 
from motion corrupted real NIR signals. Table 3 shows the 
calculated values of ∆SNR for several signals in AR method. 

 
 
 
 
 
 
 
 
Fig. 5 demonstrates one of the actual motion corrupted 

fNIRS signals (stage 2) and its clear estimated one by pro-
posed AR based method. 

 
 
 
 
 
 
 
 
 

Notice that, unlike to Fig. s 3, 4, the motion corrupted part 
of signal (stage) 2 is platted in Fig. 5. However, in Fig. s 3, 4, 
the motionless part of signal (stage 1)   was adulterated with 
artificial noise. Therefore, the range of horizontal axis in Fig-
ure 5 (and also Fig. 6) is different from Fig. s 3, 4.  
The quantitative results due to computing through ARMA 
based method brought in Table 4. 

 
 
 
 
 
 
 
 
 
An example of the motion artifact reduction of a contami-

nated real signal in ARMA method, is shown in Figure 6 
where the contaminated signal drawn as solid line and the 
cleared on as dashed line. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

Fig. 4. (a). A typical pattern of an artificial noise (we assume as white and 
Gaussian) (b). The noise in (a) added to an fNIRS signal (c). The contami-
nated signal in (b) is cleaned by ARMA based method (dashed line) and the 
original motionless signal (solid line). 
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TABLE 3 
RESULTS OF APPLYING AR BASED METHOD TO REAL DATA 

 

6 5 4 3 2 1 Signal 
index 

8.94 10 7.70 9.08 4.12 10.39 ∆𝑆𝑁𝑅 
 

TABLE 4 
RESULTS OF APPLYING ARMA BASED METHOD TO REAL DATA 

 

6 5 4 3 2 1 Signal 
index 

10.96 9.92 9.34 9.27 11.48 9.48 ∆𝑆𝑁𝑅 
 

 
Fig. 6. Real contaminated signal (solid line) and denoised signal 
(dashed line) after using ARMA based method.  
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Fig. 5. An actual experimental contaminated signal (solid 
line) from stage 2 where the subject was moving his/her 
head and denoised signal (dashed line) after using AR 
based method.  
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4 CONCLUSION 
 In the previous section, the result of applying AR based 
method as well as ARMA based method elucidated. The 
cleared signals of both simulated and real motion artifact cor-
rupted, in ARMA based approach have higher quality in com-
parison to AR. In essence, ARMA model includes more terms 
rather than AR. The additional terms in ARMA lead to a better 
fitted linear model of NIRS system. Furthermore, ∆𝑆𝑁𝑅 was 
introduced as a quantitative measure that establishes a numer-
ical criterion for comparing alternative methods. As we saw 
from Tables 1 and 2, ∆𝑆𝑁𝑅 grows more than 2 dB in ARMA 
results. From Tables 3 and 4, one can see an improvement of 
about 3 dB in ∆𝑆𝑁𝑅 in ARMA results in comparison to AR. 
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